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Two-vibron bound states in a-helix proteins: The interplay between the intramolecular
anharmonicity and the strong vibron–phonon coupling

V. Pouthier
Laboratoire de Physique Mole´culaire, UMR CNRS 6624, Faculte´ des Sciences, La Bou´loie, Universitéde Franche-Comte´,

25030 Besanc¸on Cedex, France
~Received 24 April 2003; published 18 August 2003!

The influence of the intramolecular anharmonicity and the strong vibron-phonon coupling on the two-vibron
dynamics in ana-helix protein is studied within a modified Davydov model. The intramolecular anharmonicity
of each amide-I vibration is considered, and the vibron dynamics is described according to the small polaron
approach. A unitary transformation is performed to remove the intramolecular anharmonicity, and a modified
Lang-Firsov transformation is applied to renormalize the vibron-phonon interaction. Then a mean field proce-
dure is realized to obtain the dressed anharmonic vibron Hamiltonian. It is shown that the anharmonicity
modifies the vibron-phonon interaction, which results in an enhancement of the dressing effect. In addition,
both the anharmonicity and the dressing favor the occurrence of two different bound states whose properties
strongly depend on the interplay between the anharmonicity and the dressing. This dependence was summa-
rized in a phase diagram which characterizes the number and the nature of the bound states as a function of the
relevant parameters of the problem. For a significant anharmonicity, the low-frequency bound states describe
two vibrons trapped onto the same amide-I vibration, whereas the high-frequency bound states refer to the
trapping of the two vibrons onto nearest neighbor amide-I vibrations.

DOI: 10.1103/PhysRevE.68.021909 PACS number~s!: 87.15.2v, 03.65.Ge, 63.20.Ry, 63.22.1m
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I. INTRODUCTION

In low-dimensional molecular lattices, the nonlinear n
ture of vibrational excitons~vibrons! plays a key role for
energy transfer as well as energy storage in physical, che
cal, and biological systems. In a general way, two m
sources yield nonlinear dynamics, namely, the intrinsic
tramolecular anharmonicity of each molecule and the ext
sic coupling between the vibrons and surrounding lo
frequency excitations~such as phonons, for instance!.

In classical lattices, the anharmonicity gives rise to
occurence of intrinsic localized modes, or discrete breath
which have been the subject of intense research during
last decade~for a recent review see, for instance, Re
@1–3#!. These highly localized vibrations do not require i
tegrability for their existence and correspond to quite gen
and robust solutions@4#. Since discrete breathers favor a l
cal accumulation of the energy that might be pinned in
lattice or may travel through it, they are expected to be
fundamental importance for both energy storage and tra
port. Unfortunately, no clear evidence has yet been found
the existence of breathers in real molecular lattices. By c
trast, in the quantum regime, two-vibron bound sta
~TVBS’s! have been observed in several low-dimensio
systems@5–13#. In that case, the intramolecular anharmon
ity breaks the vibron independence and favors the forma
of bound states@14–19#. When two vibrons are excited,
bound state corresponds to the trapping of two quanta o
only a few neighboring molecules with a resulting ener
which is less than the energy of two quanta lying far ap
The lateral interaction yields motion of such a state from o
molecule to another, thus leading to the occurrence of a
localized wave packet with a well-defined momentum. A
result, TVBS’s are the first quantum states that experie
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nonlinearity and can thus be viewed as the quantum coun
parts of breathers or soliton excitations@16#.

The second source of nonlinearity, which originates in
coupling between vibrons and low-frequency excitatio
was first pointed out by Davydov and co-workers@20# to
explain the mechanism for bioenergy transport. The m
idea is that the energy released by the hydrolysis of ade
ine triphosphate~ATP! can be stored in the high-frequenc
CvO vibration ~amide-I! of a peptide group of a protein
The dipole-dipole coupling between the different pepti
groups leads to delocalization of the internal vibrations a
to the formation of vibrons. However, the coupling betwe
the vibrons and the phonons of the protein yields nonlin
dynamics, which counterbalances the dispersion created
the dipole-dipole interaction. It leads to the creation of t
so-called Davydov soliton, which provides an approximati
to the self-trapping phenomena described by a Fro¨hlich type
Hamiltonian@21#. Soliton mechanisms for bioenergy transf
in proteins have received increasing attention during the
25 years, and a broad review can be found in Refs.@22#, @23#.

However, as pointed out by Brown and co-worke
@24,25# and by Ivic and co-workers@26–28#, the solution of
the Davydov problem is rather a small vibron-polaron tha
vibron-soliton. Indeed, the self-trapping process exhibits t
asymptotic solutions depending on the values taken by
three relevant parameters of the problem, i.e., the vib
bandwidth, the phonon cutoff frequency, and the small
laron binding energy proportional to the strength of t
vibron-phonon coupling. When the vibron bandwidth
greater than the phonon cutoff frequency, the adiabatic li
is reached. The phonons behave in a classical way and c
a quasistatic potential that can well be responsible for
trapping of the vibron. The vibron, dressed by this latti
distortion, forms a polaron which is described according
the soliton theory of Davydov. By contrast, when the vibr
©2003 The American Physical Society09-1
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bandwidth is less than the phonon cutoff frequency, the s
ation corresponds to the nonadiabatic limit in which t
quantum behavior of the phonons plays a crucial role.
mentioned by the authors, this situation corresponds to
vibron dynamics in proteins. Therefore, a vibron is dres
by a virtual cloud of phonons, which yields a lattice disto
tion essentially located on a single site and which instan
neously follows the vibron. The dressing effect modifies
vibron frequency, reduces the vibron bandwidth, and allo
for an attractive interaction between vibrons mediated by
tual phonons. Such an interaction is responsible for the
mation of bound states, and it has been suggested that
teins can support solitons formed by bound states involvin
large number of vibrational quanta@27,28#.

As a consequence, the previous results clearly show
both the intramolecular anharmonicity and the strong vibr
phonon coupling produce a similar effect on the vibron d
namics and favor the formation of bound states. The pre
paper is thus devoted to the fundamental question of
interplay between both nonlinear sources. To proceed,
Davydov model, modified by introducing the intramolecu
anharmonicity of each amide-I vibration, is described with
the small polaron approach. The two-vibron energy spect
is studied with special emphasis on the influence of the
tramolecular anharmonicity on the dressing effect. Note t
we do not investigate the formation of solitons but focus o
attention on the creation of TVBS’s only. This procedure
twofold. First, as mentioned previously, TVBS’s are the fi
quantum states sensitive to the nonlinearity. Their charac
ization allows us to understand the interplay between the
nonlinear sources and appears as a first step in studying
formation of multivibron solitons. Then, recent theoretic
calculations have shown that single-vibron solitons do
last long enough to be useful at biological temperatu
@29,30#. By contrast, two-vibron solitons are more stable a
appear as good candidates for bioenergy transport@31,32#.
Note that a perfect knowledge of the two-vibron dynamics
also required to interpret some experiments such as time
solved pump-probe spectroscopy@33,34#.

The paper is organized as follows. In Sec. II, the Davyd
Hamiltonian for a one-dimensional molecular lattice is d
scribed. In Sec. III, we first realize a unitary transformati
to remove the intramolecular anharmonicity. Then a modifi
Lang-Firsov @35# transformation is applied to renormaliz
the vibron-phonon interaction and to reach the small pola
point of view. Finally, a mean field procedure is performed
obtain the dressed anharmonic vibron Hamiltonian. In S
IV, we summarize the number states method used to s
the two-vibron Schro¨dinger equation. In Sec. V, a detaile
analysis of the two-vibron energy spectrum is performed
pending on the values taken by the relevant parameters o
problem. Finally, the results are discussed and interprete
Sec. VI.

II. THE DAVYDOV HAMILTONIAN

According to the original Davydov model, the vibron
phonon dynamics in ana-helix protein is described by a
one-dimensional system formed byN sites periodically dis-
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tributed along the lattice. Each site is occupied by a pep
group which contains the amide-I vibration. Thenth amide-I
vibration is assumed to behave as an internal high-freque
oscillator described by the standard creation and annihila
vibron operatorsbn

† andbn . The vibron Hamiltonian is thus
written as~using the convention\51)

Hv5(
n

v0bn
†bn1g3~bn

†1bn!31g4~bn
†1bn!4

2J~bn
†1bn!~bn11

† 1bn11!, ~1!

wherev0 stands for the internal frequency of thenth amide-I
mode andJ denotes the lateral hopping constant betwe
nearest neighbor amide-I vibrations. In Eq.~1!, g3 and g4
represent the cubic and quartic anharmonic parameter
each amide-I mode.

The amide-I vibrations interact with the phonons of t
lattice which characterize the collective dynamics of the
ternal motions of the peptide groups. Within the harmo
approximation, each peptide group, with massM, interacts
with its nearest neighbor peptide groups via the lateral fo
constantW. Therefore, the phonons correspond to a set oN
low-frequency acoustic modes, labeled$q%, for which the
Hamiltonian is defined as

Hp5(
q

Vqaq
†aq , ~2!

whereaq
† and aq stand for the phonon operators of theqth

mode with frequencyVq5Vcusin(q/2)u, Vc5A4W/M de-
noting the phonon cutoff frequency.

Finally, the vibron-phonon interaction Hamiltonian
which characterizes a random modulation of the internal
quency of each amide-I mode, is expressed as

DHvp5(
qn

1

2
~Dn,qaq

†1Dn,q* aq!~bn
†1bn!2, ~3!

where the coupling constantDn,q is written as

Dn,q52 i
D0

AN

sin~q!

Ausin~q/2!u
e2 iqn. ~4!

In Eq. ~4!, D0 is defined in terms of the coupling parameterx
introduced in the original Davydov model asD0
5x(\2MW)21/4 ~\ has been reintroduced to avoid conf
sion!.

The vibron-phonon dynamics is thus described by the
Hamiltonian H5Hv1Hp1DHvp , which slightly differs
from the original Davydov model. The Davydov Hami
tonian is recovered from Eqs.~1!–~3! by restricting the full
Hamiltonian to vibron-conserving terms only, and by n
glecting the intramolecular anharmonicity of each amid
vibration. Although the full HamiltonianH yields a rather
simple model for the protein dynamics, it cannot be solv
exactly due to the anharmonic contributions. The followi
section is thus devoted to its simplification to obtain an
fective Hamiltonian describing the vibron dynamics.
9-2
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III. DRESSED ANHARMONIC VIBRONS

A. Renormalization of the intramolecular anharmonicity

To remove the cubic and quartic intramolecular anharm
nicity, the standard procedure described by Kimballet al.
@14# is used. First, by disregarding the lateral coupling b
tween nearest neighbor amide-I vibrations as well as
te

he
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or
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it
br
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a
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m
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vibron-phonon interaction, the procedure consists in p
forming a unitary transformationT to diagonalize each an
harmonic amide-I mode. Then an approximate Hamilton
is obtained by applying the transformation on the full Ham
tonianH and by keeping the vibron-conserving terms onl

As a result, by using the formula shown in Appendix
the transformed vibron-phonon HamiltonianH̃5THT† is
expressed as
H̃5(
n

~v022A2B!bn
†bn2Abn

†2bn
22Bbn11

† bn
†bn11bn2J1@bn

†bn111H.c.#2J2@bn
†2bn11

2 1H.c.#2J3@bn
†~bn

†bn

1bn11
† bn11!bn111H.c.#1(

qn
~Dn,qaq

†1Dn,q* aq!@~112h!bn
†bn1hbn

†2bn
2#1(

q
Vqaq

†aq , ~5!
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whereA denotes the positive anharmonic parameter writ
as

A530
g3

2

v0
26g4 . ~6!

In Eq. ~5!, H.c. stands for the Hermitian conjugate and t
different parameters are defined as

B5144JS g3

v0
D 2

, J15JF1144S g3

v0
D 2

212
g4

v0
G ,

J254JS g3

v0
D 2

, J35JF22S g3

v0
D 2

212
g4

v0
G ,

h5120S g3

v0
D 2

212
g4

v0
. ~7!

Note that Eq.~5! was obtained by disregarding the consta
term as well as contributions acting on states involving m
than two vibrons.

The unitary transformation allows us to diagonalize ea
anharmonic amide-I vibration up to the second order w
respect to the anharmonic parameters. As a result, the vi
operators describe vibrational states, called anharmonic
brons, that are expressed as linear superimpositions o
harmonic states of each amide-I mode. Therefore, Eq.~5!
clearly shows that the anharmonicity strongly affects the
namics of these anharmonic vibrons. It first modifies the h
monic part of the Hamiltonian by inducing a redshift of ea
internal frequency (v0→v022A2B) and by changing the
strength of the lateral interaction (J→J1). Then the anhar-
monicity is responsible for the occurrence of coupling ter
which break the vibron independence and directly affect
two-vibron dynamics. The terms2Abn

†bn
†bnbn and

2Bbn
†bn11

† bnbn11 yield an attractive interaction betwee
two vibrons and favor their trapping around the sa
amide-I site and around two nearest neighbor sites, res
tively. The contributions proportional toJ2 characterize hops
n

t
e

h
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-
r-

s
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e
c-

in the course of which two vibrons, initially located on th
same amide-I vibration, realize simultaneously a transition
a nearest neighbor amide-I site. In the same way, the co
butions proportional toJ3 affect single-vibron hops from
states formed by two vibrons located on the same amid
vibration. Finally, the anharmonicity leads to a correction
the vibron-phonon coupling Hamiltonian, and Eq.~5! shows
that single- and two-vibron states do not experience the s
interaction with the phonon bath. When compared with
harmonic situation, the coupling between phonons a
single-vibron states is enhanced by the anharmonicity, i.e
is multiplied by the factor 112h. Moreover, the terms
hbn

†bn
†bnbn , which act on two-vibron states only, show th

two vibrons located on the same amide-I mode interact i
different way with the phonon bath when compared with tw
vibrons that are far apart. Note that the anharmonic corr
tions occurring in Eq.~7! are typically of the order ofA/v0
and represent rather small contributions, which have b
neglected in our previous work@17–19#. Nevertheless, al-
though some changes can effectively be disregarded, suc
the modification of the hopping constants, other contrib
tions play a significant role, especially the correction of t
vibron-phonon interaction, as will be shown in the followin
sections.

B. Renormalization of the vibron-phonon coupling

The next step in our procedure is to partially remove
vibron-phonon coupling Hamiltonian by performing a mod
fied Lang-Firsov@35# transformation. According to Ivic and
co-workers’ remarks@27,28#, the vibron-phonon dynamics i
dominated by the so-called dressing effect since the nona
batic limit is reached. As a result, we consider a ‘‘full dres
ing’’ and introduce the following unitary transformation:

U5expS (
n

Qn@~112h!bn
†bn1hbn

†bn
†bnbn# D , ~8!

whereQn is defined as
9-3
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Qn5(
q

FDn,q

Vq
aq

†2
Dn,q*

Vq
aqG . ~9!

The transformationU @Eq. ~8!# differs slightly from the true
Lang-Firsov transformation due to its dependence on
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vibron population operators. This dependence originate
the modification of the vibron-phonon interaction mediat
by the intramolecular anharmonicity@see Eq.~5!# and the
original Lang-Firsov transformation is recovered by setti
h50. Therefore, by using Eq.~8!, the transformed Hamil-
tonianĤ5UH̃U† is expressed as
Ĥ5(
n

v̂0bn
†bn2Âbn

†2bn
22B̂bn11

† bn
†bn11bn2J1@Qn

†~Nn21!Qn11~Nn11!bn
†bn111H.c.#

2J2FQn
†2S Nn2

3

2DQn11
2 S Nn111

1

2Dbn
†2bn11

2 1H.c.G2J3@Qn
†~Nn21!Qn11~Nn11!bn

†@Nn1Nn11#bn111H.c.#

1(
q

Vqaq
†aq , ~10!
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whereNn5bn
†bn denotes the vibron population operator a

where the different parameters occurring in Eq.~10! are ex-
pressed in terms of the small polaron binding energyEB

52D0
2/Vc as

v̂05v022A2B2~114h!EB ,

Â5A1~118h!EB , B̂5B1~114h!EB . ~11!

In Eq. ~10!, Qn(Nn) stands for the dressing operator defin
as

Qn~Nn!5exp~2Qn@112h12hNn# !. ~12!

In this dressed anharmonic vibron point of view@Eq.
~10!#, the vibron-phonon coupling remains through t
modulation of the lateral terms by the dressing opera
Qn(Nn). Although these operators depend on the phon
coordinates in a highly nonlinear way, the vibron-phon
interaction has been strongly reduced with this transform
tion. As a result, we can take advantage of this reduction
express the full HamiltonianĤ as the sum of three separa
contributions as@26,27#

Ĥ5Ĥeff1Hp1DH, ~13!

where Ĥeff5^Ĥ&2Hp denotes the effective Hamiltonian o
the dressed anharmonic vibrons and whereDH5Ĥ2^Ĥ&
stands for the remaining part of the vibron-phonon inter
tion. The symbol̂¯& represents a thermal average over
phonon degrees of freedom which are assumed to be in
mal equilibrium at temperatureT. As a result, the effective
dressed anharmonic vibron Hamiltonian is written as
rs
n

-
to

-
e
er-

Ĥeff5(
n

v̂0bn
†bn2Âbn

†2bn
22B̂bn11

† bn
†bn11bn2J1@F~Nn

1Nn11!bn
†bn111H.c.#2J2@F~Nn1Nn11!4bn

†2bn11
2

1H.c.#2J3@F~Nn1Nn11!bn
†@Nn1Nn11#bn11

1H.c.#, ~14!

whereF(X)5exp$2S(T)@112h12hX#% and whereS(T) is
the coupling constant introduced by Ivic and co-workers
(kB denotes the Boltzmann constant!

S~T!5
4EB

NVc
(

q
UsinS q

2D UcosS q

2D 2

cothS Vq

2kBTD . ~15!

The HamiltonianĤeff @Eq. ~14!# describes the dynamic
of the anharmonic vibrons dressed by a virtual cloud
phonons, i.e., anharmonic small polarons. It takes into
count the anharmonicity up to the second order and allo
for a renormalization of the main part of the vibron-phon
coupling within the nonadiabatic limit. The interactio
HamiltonianDH, which characterizes the coupling betwe
these dressed anharmonic vibrons and the remain
phonons, is assumed to be small in order to be treated u
perturbation theory. This contribution, responsible for pha
relaxation, will be studied in a forthcoming paper.

Equation~14! clearly shows the interplay between the i
tramolecular anharmonicity and the strong vibron-phon
coupling. The HamiltonianĤeff exhibits basically the same
contributions as the vibron part of the anharmonic Ham
tonian H̃. The main difference is that the parameters occ
ring in Ĥeff are renormalized due to the dressing effe
which modifies the dynamics in two main ways. First,
yields additional contributions to the anharmonic parame
A and B as well as to the internal frequencyv0 @Eq. ~11!#.
Then, the dressing effect modifies the different lateral con
butions via the dressing functionF(X) which reduces the
9-4
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hopping constants. However, in marked contrast with
harmonic situation, the intramolecular anharmonicity e
hances the role played by both the small polaron bind
energy and the coupling constantS(T). In addition, the
dressing effect depends on the vibron population. As sho
in the next section, this dependence discriminates betw
transitions involving two vibrons located on the sam
amide-I vibration and transitions involving two vibrons th
are far apart.

IV. TWO-VIBRON STATES

Since the effective HamiltonianĤeff @Eq. ~14!# conserves
the number of dressed anharmonic vibrons, its eigenst
can be characterized by using the number states method@16–
19#. Within this method, the two-vibron wave function
expanded as

uC&5 (
n1 ,n2>n1

C~n1 ,n2!un1 ,n2), ~16!

where $un1 ,n2)% denotes a local basis set normalized a
symmetrized according to the restrictionn2>n1 due to the
indistinguishable nature of the vibrons@17–19#. A particular
vectorun1 ,n2) characterizes two vibrons located on the si
n1 andn2 , respectively. The expression of the correspond
time-independent Schro¨dinger equationĤeffuC&5vuC& de-
pends on the nature of the basis vectors involved. Inde
from Eq. ~14!, there are three different situations, describi
two vibrons located on sites that are far apart, two vibro
located on nearest neighbor sites, and two vibrons locate
the same site.

In the first situation, the Schro¨dinger equation is ex-
pressed as

2J1F~1!@C~n1 ,n211!1C~n1 ,n221!#2J1F~1!@C~n1

11,n2!1C~n121,n2!#12v̂0C~n1 ,n2!

5vC~n1 ,n2!. ~17!

Equation~17! shows that the two vibrons move in an ind
pendent way according to an effective hopping const
J1F(1)5J1 exp@2(114h)S(T)#, which slightly differs from
the hopping constant involved in the harmonic approxim
tion. Indeed, as discussed in the previous section, the
tramolecular anharmonicity modifies the harmonic hopp
constant (J→J1) and enhances the dressing effect@S(T)
→(114h)S(T)#. Therefore, although the anharmonic p
rameterh is rather small, it acts under the exponential a
thus reduces the effective hopping constant with respec
the harmonic situation.

When two vibrons are located on nearest neigh
amide-I vibrations, the Schro¨dinger equation is expressed

2J1F~1!@C~n1 ,n112!1C~n121,n111!#

2&~J11J3!F~2!@C~n1 ,n1!1C~n111,n111!#

1~2v̂02B̂!C~n1 ,n111!

5vC~n1 ,n111!, ~18!
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and when two vibrons are located on the same amide-I m
the Schro¨dinger equation is defined as

22J2F~2!4@C~n111,n111!1C~n121,n121!#

2&~J11J3!F~2!@C~n1 ,n111!1C~n121,n1!#

1~2v̂022Â!C~n1 ,n1!

5vC~n1 ,n1!. ~19!

As shown in Eqs.~18! and ~19!, both the intramolecular
anharmonicity and the dressing effect strongly modify t
dynamics involving vibrons located on neighboring site
First, they contribute to a redshift of the energies of the c
responding states. Then, they affect the hopping processe
favoring simultaneous motions of two vibrons and by chan
ing the dressing effect, which is characterized by the eff
tive correctionF(2)5exp@2(116h)S(T)#. This latter feature
originates in the dependence of the dressing operators@Eq.
~12!# on the vibron population. Therefore, sinceF~2! is less
thanF~1!, it is clear that the trapping process experienced
two vibrons located on the same site is more efficient th
the dressing effect which modifies the single-vibron dyna
ics.

Equations~17!–~19! clearly indicate how the physics o
the two-vibron states is related to the dynamics of a sin
fictitious particle moving quantum mechanically on the tw
dimensional lattice displayed in Fig. 1~a! @17–19#. Within
this equivalence, the two-vibron wave functionC(n1 ,n2)
can be viewed as the wave function of the fictitious partic
Its dynamics is described by a tight-binding Hamiltoni
characterized by the self-energy 2v̂0 located on each site an
a hopping matrixJ1F(1) which couples nearest neighbo
sites. However, the two-dimensional~2D! lattice exhibits two
rows of defects@see Fig. 1~a!# which yield a redshift of the
self-energy of the corresponding sites as well as a modifi
tion of the hopping matrix elements connecting the def
sites. Therefore, such defects allow us to discriminate
tween two different eigenstates. The eigenstates of the
of the lattice correspond to plane waves slightly perturbed
the defects. By contrast, the presence of the defects lead
the occurrence of states that are localized in the vicinity
the two defect rows. In terms of the two-vibron dynamic
the previous equivalence yields two different kinds of eige
states. Indeed, the delocalization of the fictitious particle
associated with free motion of the two vibrons, i.e., tw
vibron free states~TVFS’s!, whereas its localization is con
nected with the occurrence of TVBS’s. Note that in mark
contrast with the standard Hubbard Hamiltonian for boso
@14,16,18#, the presence of two defect rows in our equivale
lattice shows that the system can support two kinds of bo
states, corresponding to the trapping of the two vibrons
ther on the same amide-I vibration or on nearest neigh
amide-I sites, respectively.

The Schro¨dinger equation Eqs.~17!–~19! can be ex-
pressed in an improved way by taking advantage of the
tice periodicity. Indeed, the two-vibron wave function is i
variant with respect to a translation along the lattice and
be expanded as a Bloch wave as
9-5
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C~n1 ,n25n11m!5
1

AN
(
n1

eik~n11m/2!Ck~m!. ~20!

In Eq. ~20!, the total momentumk, which belongs to the firs
Brillouin zone of the molecular lattice, is associated with t
motion of the center of mass of the two vibrons, whereas
resulting wave functionCk(m) refers to the degree of free
dom m that characterizes the distance between the two
brons. Since the momentumk is a good quantum number, th
Hamiltonian Ĥeff appears as block diagonal and the Sch¨-
dinger equation can be solved for eachk value. Therefore,
when two vibrons are located on sites that are far apartm
.1), Eq. ~17! becomes

~2v̂02v!Ck~m!2Gk@Ck~m11!1Ck~m21!#50,
~21!

where Gk52J1F(1)cos(k/2). In the same way, when tw
vibrons are located on nearest neighbor sites (m51), Eq.
~18! is rewritten as

~2v̂02B̂2v!Ck~1!2GkCk~2!2&gkCk~0!50,
~22!

FIG. 1. ~a! Equivalence between the two-vibron Schro¨dinger
equation and the dynamics of a single fictitious particle mov
quantum mechanically on a 2D lattice.~b! For each wave vectork,
the two-vibron dynamics reduces to a one-dimensional tig
binding problem on a semi-infinite lattice that exhibits two defe
~see the text!.
02190
e
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where gk52(J11J3)F(2)cos(k/2). Then, when two vi-
brons are located on the same site (m50), Eq. ~19! is ex-
pressed as

~2v̂022Âk2v!Ck~0!2&gkCk~1!50, ~23!

whereÂk5Â12J2F(2)4 cos(k).
Finally, for each wave vectork, the two-vibron dynamics

reduces to a one-dimensional tight-binding problem on
semi-infinite lattice which exhibits two defects@see Fig.
1~b!#. The Schro¨dinger equation Eqs.~21!–~23! can thus be
solved easily to obtain the two-vibron eigenstates and to
termine the two-vibron energy spectrum. This procedure
illustrated in the following section.

V. NUMERICAL RESULTS

In this section, the previous formalism is applied to ch
acterize the two-vibron energy spectrum of ana-helix pro-
tein. However, the present theory involves a set of para
eters that has to be discussed first.

From the literature, the harmonic dynamics of vibrons
a-helices is relatively well described~see, for instance, Refs
@16#, @27#!. The quantum energy for an amide-I vibration
aboutv051665 cm21 and a well accepted value for the ho
ping constant isJ57.8 cm21. By contrast, the phonon dy
namics and the vibron-phonon coupling parameter are o
partially known. The massM of a peptide group ranges be
tween 1.17310225 and 1.91310225 kg, whereas the phonon
force constantW is expected to be about 13–19.5 N m21. As
a result, the phonon cutoff frequency varies from 87 to 1
cm21. In the same way, a typical range for the vibron-phon
coupling term is x535– 62 pN. Therefore, the vibron
phonon coupling parameterD0 ranges between 12 and 2
cm21, and the small polaron binding energyEB extends from
3 to 15 cm21.

In marked contrast with the previous parameters, little
known about the intramolecular anharmonicity of ea
amide-I vibration. Therefore, to determine the range of
anharmonic parameters, we assume that the amide-I vi
tion is equivalent to the CvO stretching mode of a single
molecule, but with a different reduced massm. By describing
both vibrations according to a Morse potential, it is straig
forward to show thatv0 scales as 1/Am whereas the anhar
monicity A scales as 1/m. By comparing the harmonic fre
quency of both the amide-I vibration and the CvO
stretching mode (v052170 cm21 @36#!, the reduced mass o
the amide-I mode is found to be about 1.6–1.7 times
reduced mass of the CvO molecule. As a consequenc
since the anharmonic parameter for the CvO stretching
mode isA513.3 cm21 @36#, the anharmonic constant of th
amide-I vibration is aboutA58.0 cm21. Note that this last
value represents the order of magnitude of the anharm
parameter since, strictly speaking, the anharmonicity of
amide-I vibration depends on the details of the correspo
ing intramolecular potential. In addition, our calculations e
tablish that both the cubic and quartic anharmonic para
eters can be expressed approximately in terms ofA by using
the relation 15g3

2/v0'6g4'A.

g

t-
s
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FIG. 2. Two-vibron energy
spectrum forEB58 cm21, J58
cm21, Vc5100 cm21, T5310 K,
and for A5(a) 0 and ~b! 10
cm21.
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As a result, in the rest of the text, the intramolecular a
harmonicity will be described by a single parameter, nam
the anharmonic constantA. The small polaron binding en
ergy EB is taken as a parameter whereas the phonon cu
frequencyVc is fixed to 100 cm21. The temperature is set t
the biological temperature, i.e.,T5310 K, and the hopping
constant is set toJ57.8 cm21.

The influence of the intramolecular anharmonicity on t
two-vibron energy spectrum is shown in Figs. 2, 3, and 4
three typical situations. In each figure, the spectrum is c
tered on the corrected frequency 2v̂0 @Eq. ~11!# and corre-
sponds to the two-vibron dispersion curves drawn in the fi
Brillouin zone of the lattice, i.e.,2p,k,p.

WhenEB58 cm21 andA50 @Fig. 2~a!#, the two-vibron
energy spectrum is formed by an energy continuum ass
ated with the TVFS’s. This continuum is symmetrically l
cated around 2v̂0 with a bandwidth equal to 31.21 cm21.
Below the continuum, the energy spectrum exhibits t
bands connected to two different bound states. The l
02190
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y,

ff

r
n-
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o
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frequency band, located below the TVFS’s over the en
Brillouin zone, refers to bound states denoted TVBS-I. T
bottom of this band is located at 24.74 cm21 below the center
of the continuum and its bandwidth is about 8.7 cm21. The
second band, which refers to bound states denoted TVBS
is located below the continuum at the end of the Brillou
zone only. The band disappears inside the continuum w
uku,kc52.06. When the anharmonic parameter is set toA
510 cm21 @Fig. 2~b!#, the TVFS bandwidth is reduced t
28.40 cm21. Note that the center of the continuum is re
shifted due to the dependence of 2v̂0 @Eq. ~11!# on the an-
harmonic parameterA ~not drawn in the figure!. Thus the
intramolecular anharmonicity is responsible for a strong r
shift of the TVBS-I band as well as for a decrease of t
corresponding bandwidth. The bottom of the band is loca
at 43.39 cm21 below the center of the continuum and th
bandwidth is equal to 2.78 cm21. Finally, although the an-
harmonicity does not significantly change the shape of
TVBS-II band, it leads to a decrease of the critical wa
FIG. 3. Two-vibron energy
spectrum forEB510 cm21, J58
cm21, Vc5100 cm21, T5310 K,
and for A5(a) 0 and ~b! 10
cm21.
9-7
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FIG. 4. Two-vibron energy
spectrum forEB514 cm21, J58
cm21, Vc5100 cm21, T5310 K,
and for A5(a) 0 and ~b! 10
cm21.
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vector for which its disappearance arises, sincekc50.70.
WhenEB is set to 10 cm21, the two-vibron energy spec

trum is shown in Figs. 3~a! and 3~b!. In the harmonic case
i.e., A50 @Fig. 3~a!#, the energy spectrum exhibits the sam
features as in Fig. 2~a!. Nevertheless, the TVFS bandwidth
smaller and equal to 26.24 cm21. The width of the TVBS-I
band has been reduced to 6.04 cm21 and the bottom of the
band is located at 26.04 cm21 below the center of the con
tinuum. In addition, the critical wave vector connected to
disappearance of the TVBS-II states has been reducedkc
51.70. When the anharmonic parameter is set toA
510 cm21, we observe the same behavior as in Fig. 2~b!.
Indeed, both the TVFS and the TVBS-I bandwidths decre
to reach 23.30 and 1.70 cm21, respectively. In addition, the
bottom of the TVBS-I band is strongly redshifted and is
cated at 47.47 cm21 below the center of the continuum
However, a different process arises since the intramolec
anharmonicity yields the occurrence of the TVBS-II ba
over the entire Brillouin zone. The corresponding bandwi
is equal to 1.53 cm21 and the bottom of the band is located
13.42 cm21 below the center of the continuum.

The situation corresponding to a strong small pola
binding energy is finally illustrated in Figs. 4~a! and 4~b! for
EB514 cm21. The main difference when compared with th
two previous cases is that the dressing effect is str
enough to induce the occurrence of the TVBS-II band o
the entire Brillouin zone, even whenA50 @Fig. 4~a!#. As
previously, the intramolecular anharmonicity reduces b
the TVFS continuum and the TVBS-I bandwidth and yield
strong redshift of the TVBS-I band. Moreover, it increas
the frequency difference between the TVBS-II band and
center of the continuum and reduces the TVBS-II bandwid

The difference between the two bound states is illustra
in Fig. 5. Figures 5~a! and 5~b! show the TVBS wave func-
tions with zero wave vector and whose energy spectrum
displayed in Figs. 3~a! and 3~b!, respectively (EB
510 cm21). By contrast, Figs. 5~c! and 5~d! refer to the
TVBS whose energy spectrum is shown in Figs. 4~a! and
4~b!, respectively (EB514 cm21). The TVBS-I wave func-
02190
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tion is described by open circles whereas the TVBS-II wa
function is represented by open squares. WhenA50 and
EB510 cm21 @Fig. 5~a!#, the TVBS-I wave function is maxi-
mum whenm50 and decreases as the separation distancm
between the two vibrons increases. However, it does not
hibit a true exponential decrease versusm. When the anhar-
monicity is set toA510 cm21 @Fig. 5~b!#, the lattice sup-
ports two bound states with zero wave vector@see Fig. 3~b!#.
As previously, the TVBS-I wave function is maximum whe
m50 but the extension of the wave function has been
duced when compared with the harmonic case, i.e., it
creases exponentially versusm. By contrast, the TVBS-II
wave function is maximum whenm51 and exhibits an ex-
ponential tail asm increases. WhenEB514 cm21, the lattice
supports two bound states with zero wave vector whate
the anharmonicity@Figs. 4~a! and 4~b!#. When A50 @Fig.
5~c!#, the TVBS-I wave function, which is maximum whe
m50, shows a significant value whenm51 and does not
decrease according to a true exponential. The TVBS-II w
function is maximum whenm51 and has significant weigh
when m50. By contrast, when the anharmonicity is set
A510 cm21 @Fig. 5~d!#, the TVBS-I and TVBS-II wave
functions are clearly localized onm50 andm51, respec-
tively, both wave functions exhibiting an exponential ta
versusm.

As mentioned previously, the intramolecular anharmon
ity is responsible for a slight decrease of the TVFS ba
width. This feature is illustrated in Fig. 6 where the behav
of the bandwidth is shown as a function ofA for different
values ofEB . The figure exhibits two distinct regimes. Whe
EB50, the TVFS bandwidth increases slightly in a line
way as the anharmonicity increases. The bandwidth, equ
62.40 cm21 when A50, is blueshifted by about 0.36 cm21

when A510 cm21. In marked contrast, for finite values o
EB , the TVFS bandwidth is strongly reduced and decrea
asA increases. WhenEB59 cm21 andA50, the bandwidth
is equal to 28.6 cm21, whereas it reaches the value 25
cm21 whenA510 cm21, i.e., a variation of about 2.9 cm21.
9-8
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TWO-VIBRON BOUND STATES INa-HELIX . . . PHYSICAL REVIEW E 68, 021909 ~2003!
In Figs. 7~a! and 7~b!, the influence of the anharmonicit
on the TVBS-I states is illustrated for different values ofEB .
As shown in Fig. 7~a!, the TVBS-I binding energyEI , de-
fined as the gap between the TVBS-I state with zero w
vector and the bottom of the TVFS continuum, decrease
the anharmonicity increases. WhenEB50, EI decreases from
zero according to anA2 power law for smallA values and
reaches a quasilinear decrease for a stronger anharmon
For finite values ofEB , EI reaches the linear regime mo
rapidly on increasingA, and the slope of the decrease sligh

FIG. 5. Zero-wave-vector two-vibron bound state wave fun
tions for J58 cm21, Vc5100 cm21, T5310 K, and ~a! EB

510 cm21, A50 cm21, ~b! EB510 cm21, A510 cm21, ~c! EB

514 cm21, A50 cm21, ~d! EB514 cm21, A510 cm21. Open
circles represent the TVBS-I wave function whereas open squ
characterize the TVBS-II wave function~see the text!.
02190
e
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ity.

increases withEB . Note thatEI decreases with increasin
small polaron binding energy. In Fig. 7~b!, the behavior of
the TVBS-I bandwidth as a function ofA is illustrated for
different values ofEB . In a general way, the TVBS-I band

-

es

FIG. 6. Behavior of the two-vibron free state bandwidth as
function of the anharmonicityA for J58 cm21, Vc5100 cm21,
T5310 K, andEB50 ~full circles!, 5 ~full squares!, 7 ~full tri-
angles!, 9 ~open circles!, and 11 cm21 ~open squares!.

FIG. 7. TVBS-I ~a! binding energy and~b! bandwidth as a func-
tion of the anharmonicityA for EB50 ~full circles!, 5 ~full squares!,
7 ~full triangles!, 9 ~open circles!, and 11 cm21 ~open squares! and
for J58 cm21, Vc5100 cm21, andT5310 K.
9-9
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V. POUTHIER PHYSICAL REVIEW E 68, 021909 ~2003!
width decreases as the anharmonicity increases. Howe
for a small anharmonicity, the TVBS-I bandwidth exhibits
rather fast decrease, whereas it decreases more slowly
stronger anharmonicity. WhenEB59 cm21, the TVBS-I
bandwidth is equal to 7.28 cm21 when A50 and reaches
2.67 cm21 whenA58 cm21, i.e., almost 0.3 times smaller

Finally, Fig. 8 displays the behavior of the critical wav
vectorkc for which the TVBS-II band disappears. In a ge
eral way, kc decreases asA increases and vanishes for
critical value of the anharmonic parameterA5Ac . In others
words, whenA.Ac , the TVBS-II band is located below th
continuum. By contrast, whenA,Ac , the TVBS-II band
appears below the continuum at the end of the Brillouin zo
only, i.e., whenuku.kc . Note thatAc decreases asEB in-
creases. Moreover, the different curves clearly exhibit a c
cal behavior sincekc scales askc'(A2Ac)

1/2 when it ap-
proaches zero. Note that, as shown in the inset of Fig. 8kc
shows a similar behavior with respect to the temperatu
Indeed, forA58 cm21 andEB510 cm21, the critical wave
vector decreases on increasing the temperature and van
whenT5Tc5236 K. Therefore, whenT.Tc , the TVBS-II
band is located below the continuum over the entire Brillo
zone. Note thatkc shows the same critical behavior when
approaches zero and scales askc'(T2Tc)

1/2.

VI. DISCUSSION

To interpret and discuss the previous numerical results
us first focus our attention on the influence of the anharm
nicity on the TVFS continuum. As shown in Figs. 2, 3, 4, a
6, the intramolecular anharmonicity is responsible for a r

FIG. 8. Behavior of the critical wave vector for which the di
appearance of the TVBS-II band takes place as a function of
anharmonicityA for EB58 ~full line!, 9 ~dotted line!, 10 ~short
dashed line!, and 11 cm21 ~medium dashed line! (J58 cm21,Vc

5100 cm21,T5310 K). The inset represents the evolution of t
critical wave vector as a function of the temperature.
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shift of the TVFS bandwidth, typically of about a few wav
numbers. Note that, whenEB50, i.e., when there is no cou
pling with the phonon bath, the anharmonicity leads to a v
small blueshift of the continuum bandwidth. These featu
originate in the modification of the hopping constantJ due to
both the anharmonicity and the dressing effect. Indeed
discussed in Sec. IV, a TVFS corresponds to an indepen
motion of the two vibrons according to an effective hoppi
constantJ1F(1)5J1 exp@2(114h)S(T)#, which differs from
the constant involved in the harmonic approximation. Fir
the intramolecular anharmonicity slightly increases the h
monic hopping constant@see Eq.~7!# yielding a blueshift of
the TVFS continuum whenEB50. Then, the anharmonicity
reinforces the role played by the coupling constantS(T) that
characterizes the dressing effect@S(T)→(114h)S(T)#.
Therefore, it enhances the dressing effect and favors a
crease of the effective hopping constant. Although the t
contributions act in opposite ways, the enhancement of
dressing effect appears to be more efficient for nonvanish
values of the small polaron binding energy. In other wor
anharmonic vibrons are more sensitive to the dressing ef
than harmonic vibrons. For instance, whenT5310 K, EB
514 cm21, andJ57.8 cm21, the effective hopping constan
J1F(1) is equal to 2.32 cm21 in the harmonic case, wherea
it is redshifted to 1.96 cm21 when A510 cm21, i.e., a re-
duction of about 15%.

The main result of the present study concerns the mod
cation of the bound states due to the interplay between
intramolecular anharmonicity and the strong vibron-phon
coupling. Indeed, for the harmonic lattice, the dressing eff
is responsible for the occurrence of two different bou
states, i.e., TVBS-I and TVBS-II. The TVBS-I states are l
cated below the TVFS continuum over the entire Brillou
zone. By contrast, for TVBS-II, two situations occur depen
ing on the strength of the small polaron binding energy. F
small values ofEB , the band disappears inside the co
tinuum when the wave vectoruku is lower than a critical wave
vector kc , whereas, for large values ofEB , the band is lo-
cated below the continuum over the entire Brillouin zone.
increasing the anharmonicity, the TVBS-I band is redshif
and its bandwidth is strongly reduced. In the same way,
anharmonicity modifies the nature of the TVBS-II band.
the band is resonant with the continuum, the anharmoni
yields a decrease of the critical wave vector. Therefore,
is strong enough, the anharmonicity allows for the TVBS
band to get out of the continuum over the entire Brillou
zone. When the TVBS-II band is not resonant with the co
tinuum, the anharmonicity induces a redshift of the band
well as a decrease of its bandwidth. All the previous featu
are accompanied by a modification of the wave functions
the bound states.

To understand these features, we can take advantag
the equivalence between the two-vibron dynamics and
tight-binding problem on the one-dimensional lattice d
played in Fig. 1~b!. Within this equivalence, bound states
the real molecular lattice are described in terms of localiz
states in the equivalent lattice, the localization occurring d
to the presence of two defects. For a givenk value, the pre-
vious results clearly show that the system supports one

e

9-10



r

itio
m
s

n

l-
e-
o
ca
vi

se

n

.
al
le
at
e

a
a
a

ur
ha
w
le
si

l
th

th
s

it
te
t

io
st
ng
n
ite
b

o
a
id

e II,

me
ing
As

r
wo
hbor

de-I

of
rest

tire
-

two
ds
eas
ing

ng

ap-
e to

urve
with

TWO-VIBRON BOUND STATES INa-HELIX . . . PHYSICAL REVIEW E 68, 021909 ~2003!
two bound states, depending on the values taken by the
evant parameters of the problem~anharmonicity, small po-
laron binding energy, temperature, etc.!. In other words, if
these parameters are allowed to vary, a localization trans
arises in the equivalent lattice. Such a transition discri
nates between two ‘‘phases.’’ The first phase correspond
the presence of a single localized state~i.e., a single bound
state in the real lattice! whereas the second phase is co
nected to the occurrence of two localized states~i.e., two
bound states!. A localized state is characterized by its loca
ization lengthj, which refers to the length of the bond b
tween two vibrons in a bound state. The disappearance
localized state is accompanied by a divergence of the lo
ization length, since it now refers to two independent
brons.

This process is similar to a critical transition and con
quently we can use the tools of renormalization group~RG!
theory to understand the transition and predict the occurre
of localized states~i.e., bound states!. This can be achieved
by performing a decimation of the Schro¨dinger equation as
detailed in Refs.@37#, @38# and summarized in Appendix B
The decimation consists in eliminating from the initi
equivalent lattice one site of every two to arrive at a sca
lattice with twice the lattice spacing. If the initial lattice is
a critical point, i.e., if the localization transition takes plac
the localization lengthj is infinite and the dynamics is in
self-similar situation. As a result, no change in the critic
parameters accompanies the length scaling and the sc
lattice remains at a critical point. The decimation proced
can be applied recursively until the lattice parameter
been increased up to infinity. By operating in such a way,
drastically decrease the number of sites in the equiva
lattice, and obtain a scaled lattice that reduces to the two
sitesm50 andm51 only @see Fig. 1~b!#. It is thus possible
to study exactly the Schro¨dinger equation of such a critica
system and then to characterize the critical properties of
initial lattice. By following this procedure~see Appendix B!,
the condition for the occurrence of localized states in
equivalent lattice, i.e., for the occurrence of bound state
the real lattice, is defined as

~Âk2Gk!~B̂2Gk!5gk
2, ~24!

where the parameters are defined in Sec. IV.
As shown in Fig. 9, Eq.~24! defines the critical curve in

the space of the parameters that separate the phase I, w
single bound state, from the phase II, with two bound sta
In phase I, the nature of the bound state depends on
relative values of the parameters and three main situat
occur. WhenÂk@B̂, the localization arises around the fir
sitem50. In other words, TVBS-I characterizes the trappi
of two vibrons around the same amide-I vibration. By co
trast, whenÂk!B̂, the localization occurs on the second s
m51 and the two vibrons are trapped on nearest neigh
amide-I modes. In the intermediate case, whenÂk'B̂, the
localized state is a superimposition of states localized
sites m50 and m51. As a result, TVBS-I characterizes
superimposition of states trapped over both the same am
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mode and two nearest neighbor amide-I modes. In phas
the lattice supports two bound states. WhenÂk@B̂, TVBS-I
corresponds to the trapping of the two vibrons on the sa
amide-I mode, whereas TVBS-II characterizes the trapp
of the two vibrons onto nearest neighbor amide-I modes.
shown in Fig. 9, the reverse situation takes place whenÂk

!B̂. Finally, whenÂk,B̂,2Âk , both bound states appea
as combinations of states involving the trapping of the t
vibrons on the same amide-I mode and on nearest neig
amide-I modes.

In the harmonica-helix protein, i.e.,A50, Eq.~11! yields
Âk5B̂5EB . Therefore, the critical curve Eq.~24! shows
that whenEB,4JF(0)cos(k/2), the lattice exhibits a single
bound state which mixes the trapping on the same ami
mode and on two nearest neighbor amide-I modes@see Fig.
5~a!#. By contrast, whenEB.4JF(0)cos(k/2), the lattice
supports two bound states, both being a superimposition
states involving trapping on the same and on two nea
neighbor amide-I modes@see Fig. 5~c!#. Note that the condi-
tion for the occurrence of two bound states over the en
Brillouin zone isEB.4JF(0). On increasing the anharmo
nicity A, Eq. ~11! shows thatÂk.B̂. For instance, whenT
5310 K, EB514 cm21, and A510 cm21, Â is equal to
28.29 cm21 whereasB̂ is equal to 16.54 cm21. Therefore the
anharmonicity decreases the hybridization between the
kinds of trapping. As a result, the TVBS-I state correspon
essentially to trapping on the same amide-I mode wher
the TVBS-II state, when it is present, characterizes trapp
on two nearest neighbor amide-I modes@see Figs. 5~b! and
5~d!#. Note that the hybridization between the two trappi
processes is also reduced when the hopping constantsGk and
gk decrease, i.e., when the different sitesm become uncorre-
lated. This feature arises when the TVBS wave vector
proachesp as well as when the temperature increases du
the dressing effect.

FIG. 9. Phase diagram in the parameter space. The critical c
discriminates a phase with a single bound state from a phase
two bound states~see the text!.
9-11
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V. POUTHIER PHYSICAL REVIEW E 68, 021909 ~2003!
Although the phase diagram displayed in Fig. 9 allows
a complete understanding of the nature of the bound state
involves parameters that are not independent. For insta
both Âk and B̂ depend onA and EB . However, from Eq.
~24!, we can define a phase diagram in the (A,EB) parameter
space. This diagram is illustrated in Fig. 10 for zero wa
vector. The temperature is fixed toT5310 K whereas three
different values for the hopping constantJ have been consid
ered. The curve discriminates between a phase with a si
bound state and a phase with two bound states, both s
being located below the continuum over the entire Brillou
zone sincek50. The figure clearly shows that the anharm
nicity favors the occurrence of two bound states by decre
ing the value of the required small polaron binding ener
For instance, whenJ57.8 cm21 andA50, EB must exceed
11.5 cm21 to allow for the occurrence of the TVBS-II state
By contrast, this value is reduced to 8.7 cm21 when A
58 cm21. Note that the curve is pushed down on decreas
the hopping constant as well as on increasing the tempera
due to the dressing effect.

From a physical point of view, the previous phase d
grams can be easily understood in terms of localization
the equivalent lattice. Indeed, since the equivalent lattice
hibits two defects on the sitesm50 andm51, it can sup-
ports two states localized on the sitesm50 andm51. How-
ever, due to the hopping processes, these two localized s
overlap and interact to generate new localized states w
appear as superimpositions of the two previous states.
mechanism is accompanied by a splitting of the frequenc
the new localized states which depends on both the stre
of the coupling between the original states and on their
quency. As a result, we obtain a high-frequency localiz
state~TVBS-II! and a low-frequency localized state~TVBS-
I!. If the splitting is strong enough, the high-frequency loc
ized state is pushed back into the continuum and a sin
localized state remains. By contrast, if the splitting is rat

FIG. 10. Phase diagram in the (A,EB) parameter space for zer
wave vector (Vc5100 cm21,T5310 K). The critical curve dis-
criminates a phase with a single bound state from a phase with
bound states~see the text!.
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weak, both localized states can be located below the c
tinuum. As shown in Eqs.~21! and ~22!, intramolecular an-
harmonicity increases the energy difference between the
original localized states. In addition, since it enhances
dressing effect, it reduces the coupling between these
states. As a result, anharmonicity favors a weak hybridi
tion between the two original localized states. The main c
sequence is that the TVBS-I and TVBS-II states are ess
tially localized aroundm50 andm51, respectively.

The present paper has clearly established the inter
between intramolecular anharmonicity and strong vibro
phonon coupling. We have shown that the anharmonic
modifies the vibron-phonon interaction, which results in
enhancement of the dressing effect. Therefore, anharm
vibrons are more sensitive to dressing than harmonic vibr
and are characterized by smaller effective hopping consta
In addition, we have shown that both nonlinear sources br
the vibron independence and favor the occurrence of
kinds of bound states whose properties strongly depend
the interplay between the anharmonicity and the dress
effect. This dependence was summarized in a phase diag
which characterizes the number as well as the nature of
bound states as a function of the values taken by the rele
parameters of the problem. In the harmonic situation, the
bound states appear as combinations of states involving
trapping of the two vibrons on the same amide-I mode a
on nearest neighbor amide-I modes. By contrast, the
tramolecular anharmonicity reduces the hybridization
tween these two kinds of trapping so that the low-frequen
bound state refers to the trapping of the two vibrons on
same amide-I mode whereas the high-frequency bound s
characterizes the trapping on nearest neighbor amide-I vi
tions. In addition, the anharmonicity strongly reduces
dispersion of the bound states and thus enhances their br
erlike behavior@19#.

To conclude, let us mention that forthcoming work will b
devoted to the fundamental question of the TVBS lifetim
due to the couplingDH @Eq. ~17!# with the remaining
phonons. This problem was studied in a recent paper@18# in
which the decay of the TVBS’s into either bound or fre
states was described by considering weak vibron-pho
coupling. However, in the present context, both the anharm
nicity and the dressing effect modify the nature and num
of the bound states as well as the coupling with the rema
ing phonons. As a consequence, a different theory mus
elaborated to characterize the different pathways for the
cay of the TVBS’s.

APPENDIX A: UNITARY TRANSFORMATION TO
REMOVE THE INTRAMOLECULAR ANHARMONICITY

By assuming that the cubic anharmonicity is one order
magnitude greater than the quartic anharmonicity, a per
bative parameterl is introduced so that the vibrationa
Hamiltonian of thenth amide-I mode is written as

hn5hn
~0!1lVn1l2Wn1¯ , ~A1!

where hn
(0)5v0bn

†bn , Vn5g3(bn
†1bn)3, and Wn5g4(bn

†

1bn)4. The anharmonic terms in Eq.~A1! can be removed

o
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by performing a perturbative unitary transformationTn
5exp(Sn), whereSn is expanded as

Sn5lSn
~1!1l2Sn

~2!1¯ . ~A2!

Under this transformation, the Hamiltonianhn becomes

h̃n5hn
~0!1l~V1@Sn

~1! ,hn
~0!# !1l2S W1@Sn

~2! ,hn
~0!#

1@Sn
~1! ,V#1

1

2
†~Sn

~1!!,@Sn
~1! ,hn

~0!#‡D1¯ . ~A3!

Since the required unitary transformation must diagona
the Hamiltonian, the diagonal terms in Eq.~A3! participate
in the diagonalization scheme of the Hamiltonian wher
the nondiagonal terms, which must vanish, allow us to de
mine theSn operator order by order. At second order wi
respect to the anharmonic parameters, we obtain

Sn
~1!5

g3

v0
@bn

†32bn
319~bn

†2bn2bn
†bn

21bn
†2bn!# ~A4!

and

Sn
~2!5

1

4 F g4

v0
13S g3

v0
D 2G@bn

†42bn
4#1F g4

v0
23S g3

v0
D 2G@2bn

†3bn

22bn
†bn

313bn
†223bn

2#, ~A5!

which lead to the renormalized Hamiltonian

h̃n5~v022A!bn
†bn2Abn

†bn
†bnbn , ~A6!

where the irrelevant constant was disregarded and wheA
denotes the positive anharmonic parameter defined in
~6!.

At this step, the full vibron-phonon HamiltonianH can be
expressed in an improved way by applying the general u
tary transformationT5PnTn . The transformation modifies
the lateral interaction as well as the vibron-phonon coupl
Hamiltonian, leading to the occurrence of vibron-conserv
and vibron-nonconserving terms. Nevertheless, since the
ternal frequencyv0 is more than two orders of magnitud
greater than the anharmonic parametersg3 andg4 , the non-
conserving terms are weak when compared with the cons
ing terms and will be neglected. Such a procedure requ
knowledge of the transformation of the vibron displacem
operatorbn1bn

† , expressed as

b̃n
†1b̃n5bn

†1bn12
g3

v0
@bn

†21bn
226bn

†bn23#1F22S g3

v0
D 2

26
g4

v0
G@bn

†1bn1bn
†2bn1bn

†bn
2#1F3S g3

v0
D 2

1
g4

v0
G

3@bn
†31bn

3#. ~A7!
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By using Eq.~A7!, the transformation of the operators (bn
†

1bn)2 and (bn
†1bn)(bn11

† 1bn11) involved in the vibron-
phonon Hamiltonian can be determined easily. By restrict
the calculations to the vibron-conserving terms, we thus
tain

~ b̃n
†1b̃n!251188S g3

v0
D 2

212
g4

v0
12~112h!bn

†bn

12hbn
†bn

†bnbn1~nonconserving terms!,

~A8!

whereh is defined in Eq.~7! and

~ b̃n
†1b̃n!~ b̃n8

†
1b̃n8!

572S g3

v0
D 2

@bn
†bn1bn8

† bn8#

1F1144S g3

v0
D 2

212
g4

v0
G

3@bn
†bn81bn8

† bn#1F22S g3

v0
D 2

212
g4

v0
Gbn

†

3~bn
†bn1bn8

† bn8!bn81F22S g3

v0
D 2

212
g4

v0
G

3bn8
†

~bn
†bn1bn8

† bn8!bn14S g3

v0
D 2

3@bn
†2bn8

2
1bn8

†2bn
2#1144S g3

v0
D 2

@bn
†bn8

† bnbn8#

1~nonconserving terms!. ~A9!

Finally, by using Eqs.~A7!–~A9!, the transformed Hamil-
tonian Eq.~5! is obtained straight-forwardly.

APPENDIX B: DECIMATION OF THE TWO-VIBRON
SCHRÖDINGER EQUATION

For eachk value, the two-vibron Schro¨dinger equation
Eqs.~21!–~23! can be reduced by using a decimation proc
dure @37,38#. To proceed, let us rewrite the Schro¨dinger
equation Eqs.~21!–~23! as

~l12a!Ck~0!52&gCk~1!, ~B1!

~l1b!Ck~1!52&gCk~0!2Ck~2!,

lCk~m!52Ck~m11!2Ck~m21!, m52,3,4,...,

where l5(v22v̂0)/Gk , a5Âk /Gk , b5B̂/Gk , and g
5gk /Gk .

In Eq. ~B1!, we eliminate the wave functions connected
the even sites by substituting their expressions in the Sc¨-
dinger equations of the odd sites. Nevertheless, we keep
changed the first two Schro¨dinger equations associated wi
9-13
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the defect sitesm50 andm51. We thus obtain a new set o
Schrödinger equations for the odd sites only, as

@22l222~la11!#Ck~0!5&lgCk~1!,

@22l22~lb11!#Ck~1!52&lgCk~0!2Ck~3!,

~22l2!Ck~m!52Ck~m11!2Ck~m21!, m53,5,7,... .
~B2!

Equation~B2! characterizes the Schro¨dinger equation of the
rescaled lattice with parameters defining the RG transfor
tion:

l~1!522l2,

a~1!52la21,

b~1!52lb21,

g~1!52lg. ~B3!

The previous decimation procedure allows us to define
critical values of the parameters responsible for the occ
rence of bound states. Indeed, bound states correspond
localization of the wave functionCk(m) around the sites
m50 andm51. Therefore, when the decimation is appli
recursivelyp times, the neighboring site of the sitem51 is
pushed to infinity, and we thus obtain an ultimate sca
lattice formed by the two side sitesm50 andm51 only.
The Schro¨dinger equation can thus be solved exactly, and
two eigenvalues are expressed as

l~p!52
2a~p!1b~p!

2

6AS 2a~p!1b~p!

2 D 2

22~a~p!b~p!2g~p!2!. ~B4!
n

ys

02190
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A TVBS occurs when its frequency is at least equal to
minimum of the TVFS continuum. This condition is obtaine
when l5lc522. At the critical pointl5lc , the scaled
values of the parameterl satisfyl (1)5¯5l (p)5lc . This
parameterl becomes scale invariant and is a fixed point
the RG transformation. Indeed, when the initial lattice d
namics is at a critical point, the localization lengthj is infi-
nite. No change in the critical parameters accompanies
length scaling so that the scaled lattice remains at a crit
point.

From Eq.~B3!, the scaled values of the parameters at
critical point are expressed as

l~p!522,

a~p!52p~a21!11,

b~p!52p~b21!11,

g~p!52pg. ~B5!

Combining Eqs.~B5! and~B4! for p tending to infinity leads
to the conditions for the occurrence of a bound state in te
of the reduced parametersa, b, andg as

~a21!~b21!5g2. ~B6!

Equation~B6! is equivalent to Eq.~24! with the correspond-
ing definitions ofa, b, andg.
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